PHYSICAL REVIEW E

VOLUME 53, NUMBER 3

MARCH 1996

Estimation of asymmetry in physics

Simon P. Wilson! and Kevin J. Coakley®
! Department of Statistics, University of Dublin, Trinity College, Ireland
XNational Institute of Standards and Technology, Boulder, Colorado 80303
(Received 1 May 1995; revised manuscript received 28 September 1995)

The notion of asymmetry arises in many physical experiments, being a natural expression of the rela-
tive difference between two quantities. In this paper, we discuss the estimation of asymmetries between
the rates of two event processes subject to a common background. Such asymmetries have many appli-
cations in solid-state physics—a measurement of the difference in arrival rates of electrons with one of
two possible spin orientations to a detector, for example. We describe three techniques for estimating
asymmetries from observations subject to uncertainty: a naive method based on an unbiased estimate
and a Gaussian approximation, a bootstrap approach, and a Bayesian approach. Differences in the inter-
pretation of the estimates are discussed and their performances are compared by means of a simulation
study. The aim is both to review the methodology on estimation of asymmetries and to contribute to the
more general discussion of the relative merits of frequentist and Bayesian inference.

PACS number(s): 02.50.—r, 02.70.Lq, 34.90.+q

I. INTRODUCTION

Physicists are becoming more conscious of the need for
sound statistical analysis of data that is obtained under
uncertainty. Along with this awareness has come the
realization that the outcome of a statistical analysis often
depends on which of the two statistical paradigms—
classical or Bayesian—is adopted. This is particularly
the case in particle physics, a point that is admirably dis-
cussed in a recent paper by Cousins [1].

In this paper we investigate the estimation of asym-
metries. The asymmetry between two comparable, non-
negative numerical quantities X and Y, denoted by R, is
given by

_X-Y
X+y '

(1)

The purpose of R is to give a relative measure of the
difference between X and Y; R takes values between —1
and +1, is dimensionless, and is also scale invariant. It is
used in optics, for example, where it is a measure of light
polarization, and can be applied to the analysis of thin
films. Because an asymmetry is a relative scale, it allows
one to ignore any scaling effects on X and Y that are
present in an experiment—such as detector sensitivity —
that otherwise would have to be carefully measured and
accounted for.

The motivating example for our work comes from
scanning electron microscopy with polarization analysis
(SEMPA)—we refer to Pierce [2] and Pierce et al. [3] for
details—but the ideas presented easily extend to other
situations of interest, in particular where one is interested
in the difference between two event rates in the presence
of background noise. There are many more examples of
asymmetries to be found in the physics literature; see, for
example, [4-6].

The paper begins with a description of three different
estimation techniques: a classical or “naive” technique, a
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bootstrap, and a Bayesian approach. Then their proper-
ties are investigated by means of simulation experiments.
The question of greatest interest is whether any method is
clearly superior to the others; not surprisingly, there is no
straight answer to this question, although we do conclude
that the most commonly used classical estimation tech-
nique does possess undesirable properties that are not
present in the other two. We demonstrate that the
methods produce almost identical analyses for many situ-
ations, but that they differ in certain cases; namely, when
there is a large component of noise in the data, when the
asymmetry is close to a boundary value, or when the
number of counts is small.

The general problem is as follows. We conduct an ex-
periment where we observe the occurrence of two types
of event (in the SEMPA example, this would be the
detection of electrons of either spin, relative to some
predetermined axis). We observe n; occurrences of the
first event and n, occurrences of the second. The number
of observed events of the two types are Poisson random
variables with unknown means A; and A,; such an as-
sumption is motivated by a maximum entropy argument
(see [7]). From the observed counts, we desire to estimate
the asymmetry in means, R =(A;—A,)/(A;{+A,). The
problem can be viewed as an extension of the situation
where a single signal is recorded in the presence of a
background, where various models, using both the fre-
quentist and Bayesian methodology, have been proposed
(see [7-10]).

Unfortunately, within n; and n, there are background
events that have been counted and cannot be dis-
tinguished from the true events of interest (in the
SEMPA example, these will be background electrons un-
connected with the microscopy). Here we assume that
both our counts are confounded by a background count
that is a Poisson random variable with unknown mean A,
although we note that what we have to say can be extend-
ed to the case where both signals have a background of
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different magnitude. We also note that this does not
mean that the number of background counts within 7,
and n, are the same; they just have the same distribution.
We have made an implicit assumption here that all
counts are taken over the same interval of time, though
we note that all the methods we discuss are easily
modified to account for differing measurement times.

In order to gauge the unknown size of the background
count, a separate measurement of the background alone
is taken either before or after the experiment. We denote
the size of this background count as n. We are assuming
that this background is directly measured, and not in-
ferred from theoretical considerations or by a Monte Car-
lo simulation.

The first aim is to produce a point estimate for the
value of R from the data (n,,n,,n). Having obtained a
point estimate for R, it is then important to calculate the
magnitude of the possible error in the estimate. Such an
estimate takes the form of an interval over which, in light
of the data, we believe R is likely to lie. All the methods
we discuss will calculate an interval estimate to go with
the point estimate.

The next three sections describe the three estimation
techniques in detail. Section V compares the techniques,
and we close with a discussion of the relative merits of
the three techniques.

II. CLASSICAL ESTIMATION

This is the most commonly used estimation technique,
which we will also call naive estimation. Suppose n,, n,,
and n are the observed counts from the experiment and
the observed background count, respectively. The naive
estimator is motivated by noting that, since they are
means of Poisson counts, unbiased estimates for A, and A,
are n; —n and n, —n, respectively. Substitution into the
definition of asymmetry yields the naive estimator

—n,

R=—"1"2 @

ny+n,—2n

If either n, <n or n, <n then R lies outside the admissi-
ble values of R (that is, [ —1,1]). When this happens, it
is interpreted as evidence that R lies at a boundary value.

A confidence interval for R is found by the propaga-
tion of errors (POE) technique; see [11]. The variance of

is approximated by a first order Taylor expansion of R
as a function of n, n,, and n and from this, an expres-
sion for 0% is obtained as

4
oct~———————[n{(n,—n)+n,(n —n,)?
% (n1+n2—2n)4[ 1(n, 2 1

+n(n,—n,)?]. (3)

Now R is assumed to be approximately normally distri-
buted. Under this additional assumption, an approxi-
mate  95% confidence  interval for R is
(R—1.960 4,R +1.960 4).

Unfortunately, this naive estimation technique does
possess some undesirable properties in the presence of
high background counts. If n;+n, <2n then the denom-
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inator of R is negative and the estimate takes on fatuous
values; for example, if n;, =10, n,=3, and n =20, then
R=-0.26, even though the data suggests that R is posi-
tive. If n, +n,=2n, then R and 0 3 are infinite in value
and, since this event occurs with a positive probability, R
has infinite mean and variance. So, R is not an unbiased
estimator for R and the confidence interval is potentially
of infinite length.

III. BOOTSTRAP ESTIMATION

Because of the difficulties with the naive estimator, a
bootstrap method is proposed by Coakley et al. [11],
where a confidence interval estimate of R is obtained, and
by Coakley [12], where a bootstrap point estimator for R
is described.

In this method, n,, n,, and n are first observed. Then,
independent samples are made from three independent
Poisson random variables with means n,, n,, and n. Let
the ith sample from the Poisson distributions be denoted
by (n’i,ng,ni). This set of values is checked to see if it
satisfies the following three constraints:

n'<ni,
n'<nj, 4)
2ni<ni+ni .

Those samples that do not satisfy the three constraints
are discarded. From the remaining replications that do
satisfy the constraints, the naive estimator R [see Eq. (2)]
is calculated. Satisfaction of the constraints ensures that
the resulting collection of R’s lie in [ —1,1], so that they
are all admissible, and also ensures that the denominator
term of (2) is positive, so that the sign of the R’s is not
switched.

Once a large number of bootstrap samples have been
generated, their mean is taken as a point estimate of R.
A histogram of asymmetry values is formed and from this
a confidence interval for R is constructed. If n; <n or
n, <n then an interval with an endpoint at either —1 or
1 is given; otherwise the authors use a modified version of
the bias correction method of Efron [13] to produce their
interval estimate. In both cases, the confidence interval
for R always lies in [—1,1].

IV. BAYESIAN ESTIMATION

In this section we propose an alternative approach un-
der the Bayesian paradigm. The principal obstacle to the
implementation of the Bayesian approach is, of course,
the specification of a prior distribution on the three rate
parameters A,, A,, and A, and a large part of this section
is devoted to how one might proceed with the
specification.

We observe two counts from the experiment—n, and
n,—and we also measure the background count n. All
the counts are Poissonian and so the likelihood of the
three observations is
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(A1) (A +21)"2A"

P(n13n2an“"1:x2’}\f)_ nl!nz!n!

—(A,+A,+3R)

Xe (5)

A. Specification of the prior distribution

Our likelihood is a function of A, A,, and A, so if we
can specify a prior distribution on these three parameters
then a simple application of Bayes’ law will yield a poste-
rior distribution. Since R is a function of A, and A,, both
a prior and the associated posterior on R are implied. By
using the simple laws of transformation of random vari-
ables, we can say that if f(A;,A,) is a probability density
on the two rate parameters, then the density of
R =(A;{—A,)/(A;+A,) must be

2 1—r
Mf A 1+r}‘1

= dA, . (6)
(1472 7 '

mr(r)

We offer three forms for the prior density that might
be used. The first is an informative prior that attempts to
incorporate valid a priori information into the analysis.
The second two priors are attempts to convey a state of
ignorance or indifference as the state of prior knowledge
about the parameters A, A,, and A.

1. Using an informative prior

We wish to incorporate some information about the
likely values of the parameters A,, A,, and A into our
analysis. Unfortunately, it seems likely that much of the
prior knowledge would concern R directly, and not these
rate parameters. In this section we propose a certain
form for the distribution of the rate parameters that en-
ables us to incorporate information about R.

First of all, the background count rate A is assumed
stochastically independent of A; and A,. We declare A to
be I distributed with scale parameter a and shape pa-
rameter [3; this is the conjugate prior for the rate parame-
ter of a Poisson process:

— af B—1,—ak
m(Ala,B) F(B)k e . 7

For the event rate parameters of interest, A; and A,, an
assumption of stochastic independence is not reasonable
because they are properties of the same experiment and
are subject to many common scaling factors in the experi-
mental setup and environment (in SEMPA, two such fac-
tors are electron beam intensity and detector efficiency).
We assume that both A; and A, are also distributed as T
random variables with shape parameters 8; and f3,, re-
spectively, but with a common scale parameter £&. Condi-
tional on &, A}, and A, are stochastically independent,

2 ) 1 —en
mAL A BLBLE) =TI T‘éjk?i e ™% (8)
i=1 i
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Dependence is introduced when £ is itself described by a
I" distribution with a scale parameter a and shape param-
eter b. By averaging out £ we obtain a joint prior density
for A; and A,,

T(AAola,b,81,8,)= [ 1Ay, My|By, By, E)r(Ela,b)d

_a’T(b +B,+B,)
"~ T(b)T(B,)T(B,)

-1 -1
Y

(@ +A,+1y) TPth T

9)

Why choose this form for the prior of A, and A,? If
one substitutes Eq. (9) into Eq. (6), then one sees that the
implied prior on R is

(B, +B,)
BB I (5 0By

7TR(V|BI,B;_)=
2
.

X1+ (1= (10)

for —1=r =1, which is a 8 distribution in [—1,1] with
two parameters [3; and 3, (@ and b having been eliminat-
ed). The B is a very flexible density that can take many
shapes and, because this B distribution has support
[—1,1], we immediately remove the possibility of obtain-
ing the inadmissible estimates and confidence intervals
that plague the naive estimator.

Information on the likely values of R, quantified as a 8
distribution, specifies 8; and 8, and so gives information
on the prior distribution for A, and A,. This assessment is
helped by noting that

31_‘32
E(R|By,B,)= )
1818, B+ B,
45,8,
V(R|B,B,y)= , an
BB = B B+, 75,
and
_ .31—.32
mOde(RIBDBZ)_ Bl+Bz__2 ’
where E ( - - - ) denotes expectation and V ( - - - ) denotes

variance. To complete the specification of Eq. (9), values
must be assigned to the parameters @ and b, relating to &.

So, the prior distribution on A, A,, and A is specified
with six hyperparameters: a, b, 8;, B,, a, and B. The
specification procedure would involve first assessing f3;
and f,, using information about R, and then specifying
the remaining parameters using knowledge about the rate
parameters directly.

Standard calculations, from Bayes’ law and the simple
transformation of variables (6), gives the posterior density
of R, following observation of data (n,,n,,n), to be of the
following form:
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-1 b+B,—1
mr(rlny,ngm)e (1= (140"
i)
e O R -y
w0 oo —[2/(1+ 1A~ (a+ 3N
x[*[ TR e d\dA . (12)

[2A,+a(1+7)]

Evaluation of this integral must be done numerically;
shortly, we discuss this in more detail.

2. Using a uniform prior

Commonly, one would like inference on R to be in-
dependent of any a priori knowledge of its likely values,
other than that it must lie in [—1,1]. The naive and
bootstrap estimates are both a function of the data only
and so possess the necessary independence. How can the
Bayesian approach be employed in this situation? One
way is by specifying prior distributions that convey as lit-
tle information as possible, so that the posterior distribu-
tion of R is as dependent upon the data alone as it can be.

One definition of such independence is that we are
indifferent between the possible values of R a priori, that
is, our prior distribution for R is uniform on [—1,1].
Here, we can employ the prior of Sec. IV A1 since the
uniform distribution is a special case of the beta distribu-
tion, with B;=pB,=1. So, we start by adopting the infor-
mative prior of Sec. IVA 1 with these values for 3; and
B,. We still have the problem of specifying &, which
would again imply the use of prior knowledge about A,
and A,. By assuming that £ is a fixed number and not

1 ® ;oo n
(rln,,n,,n)oc ——— AMAMA, ) !
mr(rlng,n, (1+r)2f0 fo 1 1

1_
1+r

Again, we address the evaluation of this integral short-
ly, but for now we note that at r =—1 there is a limit
which is awkward numerically, but that this can be ad-
dressed by noting

mr(ring,ny,n)=mg(—rln,,n,n) . (14)

So, we can calculate the posterior density near r =—1 as
that of another posterior density near + 1, where there is
no such numerical problem.

3. Using a reference prior

The notion of indifference is not the only one that can
be used to form a noninformative prior distribution.
Another commonly invoked invariance concept is due to
Jeffreys [14]. Jeffreys argues that, in the absence of any
knowledge concerning the parameters apart from their
domain, a reasonable form for the prior density is one
which is invariant to symmetry transformations of the

“a A

random, and letting £ tend to zero, the density of A; and
A, is given by (8) and becomes increasingly flat. In the
limit, as £ becomes zero, it fails to be a density function,
but would essentially convey no information about the
values of A; and A,. If £=0 then the prior distribution on
A, and A, is called improper to reflect the fact that it is
not a proper density. However, we may still proceed to
obtain a proper posterior distribution on the rate parame-
ters via Bayes’ theorem. We also note that by letting &
take a value, as opposed to being a random variable, A,
and A, are independent. Given that we have assigned a
scale parameter of O and a shape parameter of 1 to the I
distributions of both A, and A,, we do the same with A;
thus, =0 and f=1.

So if we wish to express indifference on R, we can opt
for an improper prior and use the following values for the
parameters: a=£&=0, B,=B,=B=1. We have argued
that this choice of parameters conveys very little infor-
mation and implies indifference as to the values of R
a priori.

Routine calculations [Bayes’ law and the application of
(6)] yield a posterior distribution of R, given the data n,
n,, and n, of the form

banda .

n
‘ e—l[z/‘1+’)17~1+37~ (13)

likelihood function. In other words, our absence of
knowledge on model parameters should not depend on
such transformations of the probability model.

Prosper [7] calculates the reference prior for the case
of a single Poisson count (with mean A;) with additive
background (of mean A) and shows that it has the form

1

AN <o

(15)

One can extend Prosper’s reasoning to the case of two
Poisson counts with background; not unexpectedly, the
reference prior for our case is of the form

1
o .
(A +A)N A +2)A

77'()\1,)\«2,)\.) (16)

Although this is an improper prior density, one can
still proceed (as we had with the previous improper prior)
and calculate a proper posterior density, only this time
there is a restriction in that all three counts must be
nonzero. The posterior for R is given by



2164

SIMON P. WILSON AND KEVIN J. COAKLEY 53

TABLE 1. Analysis of low background count data.

Data Bayes’ (Uniform) Bayes’ (Ref.) Bootstrap Naive/POE

n; n, n mean P.I1 mean P.I1 mean C.I. C.I
100 50 0 0.333 (0.18,0.48) NA NA 0.332 * (0.18,0.48) 0.333 (0.18,0.48)
100 50 15 0.419 (0.22,0.62) 0.419 (0.22,0.62) 0.419 (0.23,0.62) 0.417 (0.22,0.61)
200 100 30 0.418 (0.275,0.556) 0.418 (0.275,0.555) 0.419 (0.28,0.56) 0.417 (0.28,0.56)

1 11 7 e Al
© © — — —f{[2/(1+7r) +3

Myyngn) € —— MAT T A )™ M| e AR 17
mr(rlny,ny,n) (1412 fo fo 1 (A ) 1+,M a4, a7

for ny,n,,n >0. If any of the counts are zero, the poste-
rior is not well defined.

Note the similarity between this posterior density and
that under the uniform prior assumption; in fact, under
the reference prior, the posterior is that obtained under
the uniform prior assumption but with one subtracted
from all the observed counts. Thus, for large counts,
there will be little difference between the posterior densi-
ties under the two improper priors. For small counts,
some investigation is needed to ascertain the size of the
difference.

B. Computational issues

The evaluation of the posterior densities of Eqgs. (12),
(13), and (17) must be done numerically. In each case,
this requires that a double integral over the positive qua-
drant be approximated accurately. The integrand is the
posterior density of A;, A,, and A and in all the cases is
well behaved, so the principle obstacle to the integral’s
evaluation is finding the appropriate finite region of the
quadrant where the mass of the integrand is enclosed.

For the two cases where the prior is improper, the pos-
terior is essentially the likelihood. We know where the
mass of the likelihood function is located; the maximum
likelihood estimates for A, A,, and A are max(0,n;—n),
max(0,n, —n), and n, respectively, and they give both the
modal values of the likelihood and estimates for the vari-
ance of the three parameters. From this information, we
can form a finite region of the quadrant over which we
are confident the mass of the integrand lies, and then
proceed with the numerical approximation using any one
of the common techniques.

The case of the proper prior is a little more complex,
since here the posterior is a product of a prior and the
likelihood. However, we know where the mass of the pri-
or is located in the quadrant (since we completely
specified it) and we have argued that we know where the
likelihood is located, so the location of their product can
be calculated easily. From this, a suitable finite region
can be formed and the numerical integration performed.

V. COMPARATIVE STUDY

In this section, we will compare the naive, bootstrap,
and Bayesian techniques for estimating asymmetry, with
the aim of highlighting any disagreements between them.

For the frequentist models, we will compute the point
and 95% confidence interval estimates that have been de-
scribed. For the Bayesian method, we will use one of the
improper priors, since these are the ones most likely to be
used in an analysis of experimental data. As a point esti-
mate in the Bayesian approach, we take the posterior
mean of R, and for an interval estimate we take the short-
est 95% posterior probability interval, that is, the inter-
val of shortest length over which 95% of the posterior
probability lies (since the posterior is always unimodal,
this interval is unique).

It should be emphasized that the two types of interval
estimates—confidence interval and posterior probability
interval—have different interpretations. The classical
and bootstrap approaches come under the frequentist
paradigm and so the confidence interval must be inter-
preted in the following way:

TABLE II. Analysis of high background count data.

Data Bayes’ Bootstrap POE
ny n, n mean P.I mean C.I R C.I
220 59 65 0.917 (0.796,1) 0.924 (0.803,1) 1.081 (0.769,1.39)
243 63 64 0.911 (0.791,1) 0.916 (0.796,1) 1.011 (0.760,1.26)
227 50 53 0.924 (0.816,1) 0.928 (0.817,1) 1.035 (0.796,1.27)
224 50 56 0.929 (0.824,1) 0.935 (0.829,1) 1.074 (0.810,1.34)
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TABLE III. Summary of the six simulation studies.

Study no. A A, A R
1 19 1 5 0.9
2 190 10 50 0.9
3 1900 100 500 0.9
4 4 4 20 0
5 40 40 200 0
6 400 400 2000 0

The 95% confidence interval for R is the interval such
that, were the experiment to be repeated many times and
this interval constructed, the true value of R would lie
within it 95% of the time.

On the other hand, the Bayesian shortest 95% posteri-
or probability interval is interpreted differently:

In light of the a priori assumptions on R and the ob-
served data, there is a 95% probability that R lies in this
interval. The interval is the shortest in length where this is
true.

Thus, a confidence interval is a property of the experi-
ment; in particular, it is not a probability statement and
should not be interpreted in the same way as the Bayesian
posterior probability interval.

To begin the comparison, we analyze three typical
“nice” data sets, where the overall size of count is large
and the background count is relatively small. Table I
gives estimates of the asymmetry from four sources: the
posterior distributions of R from both the uniform and
reference priors, the bootstrap estimate, and the naive es-
timator with POE. The table displays the mean and
shortest 95% probability interval of the posterior distri-
butions, the mean and 95% confidence interval from the
bootstrap, and the naive point and 95% confidence inter-
val estimates.

The four approaches give very similar point and inter-
val estimates for these well-behaved sets of data. In the
first case, the posterior distribution obtained from the
reference prior is still improper because one count was
zero, and so cannot be used. This preliminary set of ex-
amples also shows that for moderately high counts the
two uninformative priors give almost identical results.
So, in what follows, where we analyze counts of this or
greater magnitude, we use the uniform prior in the Baye-
sian analysis with the assumption that the reference prior
would produce a very similar analysis.

Of most interest are cases where estimates from the
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TABLE V. Summary of simulation study 2 (A,=190, A,=10,
and A=50).

Av. point Mean sq. Av. interval Coverage

estimate error estimate proport.
Naive 0.905 0.00984  (0.709,1.101) 0.958
Bootstrap 0.865 0.00447  (0.741,0.986) 0.974
Bayes’ 0.862 0.00452  (0.734,0.983) 0.970

three methods are likely to differ. One such case is where
the background count is high and dominates one of the
signals. Table II displays the analysis of several sets of
such data and we observe that the Bayesian and
bootstrap interval estimates are in broad agreement. In
the table, the values of R are according to Eq. (2) and are
all inadmissible. The interval estimates provided by the
POE also lie mostly outside admissible values of R. The
Bayesian and bootstrap interval estimates are similar, al-
though the Bayesian probability interval is always a little
longer.

A. Simulation studies

As a final comparison between the models, simulation
studies were run using the type of data that would most
likely distinguish between the methods. The parameters
A, Ay, and A were fixed and then 4000 Poisson samples of
ny, n,, and n were generated. Point and interval esti-
mates were calculated for each sample, using all three
methods, and these were summarized for comparison.

Six simulation studies were run. All of them simulated
data that would emphasize differences between the
methods, since they possessed a relatively high back-
ground count, an asymmetry near a boundary value, low
counts overall, or a combination of these. The values of
Ay, Ay, and A for the three studies are given in Table III,
and we can see that the studies are in two groups: the
first three studies have an asymmetry of 0.9 and the last
three have an asymmetry of 0. Within each group the
magnitude of the counts ranges over two orders of magni-
tude. The studies with larger counts will have a larger
signal to noise ratio; thus studies 1 and 4 have a low sig-
nal and studies 3 and 6 have a much higher signal.

Before moving to the studies, the question of how to
compare the different techniques must be addressed.
There are some difficulties to conducting any comparison.

(1) There are certain situations where one of the esti-

TABLE IV. Summary of simulation study 1 (A;=19, A,=1, and A=5).

Av. point Mean sq. Av. interval Coverage

estimate error estimate proport.
Naive 0.981 0.657 (—0.476,2.438) 0.955
Bootstrap 0.734 0.0467 (0.401,0.991) 0.964
Bayes’ (Uniform) 0.697 0.0578 (0.358,0.982) 0.963
Bayes’ (Ref.) 0.714 0.0508 (0.394,0.980) 0.942
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TABLE VI. Summary of simulation study 3 (A;=1900,
A,=100, and A=500).
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TABLE VIII. Summary of simulation study 5 (A,=40,
A,=40, and A=200).

Av. point Mean sq. Av. interval Coverage Av. point Mean sq. Av. interval  Coverage

estimate error estimates proport. estimate error estimates proport.
Naive 0.901 0.000979  (0.840,0.961) 0.947 Naive 0.0168 2.038 (—4.44,4.47) 0.993
Bootstrap 0.900 0.000873  (0.843,0.960) 0.942 Bootstrap 0.0008 0.0603 (—0.578,0.578) 0.918
Bayes’ 0.900 0.000858  (0.843,0.959) 0.927 Bayes’ 0.0007 0.0571 (—0.579,0.580) 0.942

mates is not defined. If n;+n,—2n =0 then the naive
estimate is not defined, whereas if any count is zero the
posterior density under the reference prior is not proper.
For the purposes of comparison, we ignore any samples
where either of these events have occurred and merely
note that they have arisen. In study 1, there are three
cases where n; +n, —2n =0 and 31 cases where there is a
zero count, so we ignore 34 of the 4000 simulations. In
study 4, we ignore 133 cases where n; +n,—2n =0 and
in study 5, we ignore two cases where n;+n,—2n =0
(there are no zero counts in these two studies).

(2) The aims of the estimates are different under the
two paradigms. For the frequentist, the estimates want
to be as close as possible to the ‘“‘true” value of asym-
metry. For the Bayesian, there is no true value of asym-
metry; R is an unknown quantity and the posterior distri-
bution reflects the current state of belief as to its likely
values. For the simulation studies, however, we have
fixed R beforehand and so it becomes of general interest
to see how close our estimates are to this value, on the
average. So, our comparisons will make use of (frequen-
tist) concepts of closeness like biasedness, mean square er-
ror, and coverage.

For the point estimates, we look at two measures:
biasedness and mean square error. We take the average
of each point estimate over the 4000 simulations as the
expected value of the point estimate and can then com-
pare it with the true asymmetry value. Biasedness is a
measure of the location of the point estimate, but gives
no measure of the likely error; for this we take mean
square error (MSE), which is the average of the squared
difference between the point estimates and the true asym-
metry value. The naive estimator has theoretical infinite
mean and variance, and so infinite bias and mean square
error, but by eliminating from consideration the simula-
tions where n,+n,—2n =0, our simulated bias and
mean square error will be finite.

For the interval estimate, the important measure (un-
der the frequentist paradigm) is coverage, or the propor-

tion of confidence intervals that contain the true asym-
metry value. From the definition of a confidence interval,
we would expect 95% of the 4000 naive and bootstrap
confidence intervals to contain the true asymmetry value,
that is, a coverage of 0.95. For the Bayesian interval,
coverage does not strictly have any meaning (since there
is no true value of R) but it is still of interest to see how
often the interval captures the true value in the simula-
tion study. Indeed, Cousins [1] argues that a Bayesian
method must exhibit good coverage if it is to be accept-
able to physicists.

Tables IV-IX display summary information from each
study. The studies that show greatest divergence between
the methods are 1, 4, and 5. To highlight these, we
display scatter plots of the different point estimates in
Figs. 1-3.

VI. CONCLUSION

In this paper, we have described the current statistical
approach to estimating asymmetries and highlighted
some deficiencies. Two alternative approaches were then
proposed.

The differences in the three methods were highlighted
in the simulation studies. As regards the point estimates,
the bootstrap and Bayesian approaches were in greater
agreement with greatly smaller mean square error, for the
most part, than the naive estimate. For the last three
studies, where R =0, a simple symmetry argument im-
plies that all three point estimates are unbiased, but for
studies 1 and 2, where the true asymmetry is 0.9 and the
noise is high, the bias of the two approaches introduced
here was seen to be significantly larger than that of the
naive estimate. For studies 3 and 6, where the noise be-
comes relatively small, all three methods were in general
agreement.

So, in terms of minimizing MSE, the bootstrap and
Bayes’ estimate of asymmetry are generally better than
the naive estimate. However, according to the criteria of
minimizing bias, the naive estimate performed generally

TABLE VII. Summary of simulation study 4 (A;=4, A,=4, and A=20).

Av. point Mean sq. Av. interval Coverage

estimate error estimate proport.
Naive 0.0255 4.43 (—1.214,1.219) 0.999
Bootstrap —0.0031 0.0970 (—0.770,0.767) 0.938
Bayes’ (Uniform) —0.0035 0.0724 (—0.743,0.736) 0.964
Bayes’ (Ref.) —0.0036 0.0750 (—0.738,0.731) 0.960
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TABLE IX. Summary of simulation study 6 (A,=400,
A, =400, and A=2000).

Av. point Mean sq.  Av. interval = Coverage

estimate error estimates proport.
Naive —0.00120 0.00785 (—0.177,0.174) 0.963
Bootstrap —0.00095 0.00822 (—0.185,0.182) 0.954
Bayes’ —0.00125 0.00806 (—0.185,0.182) 0.964

better than the other two, with the proviso that we have
ignored cases where R is infinite.

Now we consider the interval estimates. We can use
the coverage proportion to detect whether the intervals
are capturing the true value of R about 95% of the time;
the sampling error from 4000 simulations is 0.0034, so
that any coverage proportions lying above 0.96 or below
0.94 provides strong evidence against proper coverage.

Aside from study 4, the POE interval had coverage
higher than the desired level of 0.95. For study 3, the
difference between the observed coverage 0.947 and 0.95
was within the sampling error; otherwise the coverage
was significantly different from that expected if the cover-
age were 0.95. For the low signal to noise situations
(studies 1, 4, and 5), the propagation of errors method
yielded dramatically wider intervals than did the
bootstrap confidence intervals and the Bayesian probabil-
ity intervals. In studies 4 and 5 this led to a very high
coverage above 0.99, much larger than with the alterna-
tive methods.

The coverage of the Bayesian and bootstrap intervals
was sometimes significantly more and sometimes
significantly less than 0.95. For study 4, which has the
lowest signal to noise ratio, the Bayesian coverage was
more than 0.95 but the bootstrap coverage was less than
0.95. For study 5, where there is a more moderate signal
to noise ratio, the Bayesian and bootstrap coverages are a
bit less than 0.95. However, for study 3, which had one
of the highest signal to noise ratios, the coverage of the
Bayesian method seemed to drop quite severely.

Our conclusions are that the naive approach to es-
timating asymmetries is easy to implement and works

bootstrap
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FIG. 2. Point estimates of R from simulation study 4
(R =0).

well in many situations, such as those of Table I in Sec.
V, but the assumptions that underlie the method begin to
fail under certain conditions, such as high background
noise and asymmetries close to 1. In these situations,
naive estimates of asymmetry can lie outside physically
possible values and, since the denominator can be zero
with a sizeable probability, might well be infinite. It
would seem sensible to search for alternative approaches
that maintain admissibility under these difficult cir-
cumstances, and there are two natural alternatives that
we have proposed: one is a bootstrap and the other is a
Bayesian method. Both guarantee admissibility, al-
though evidence from our studies seems to suggest that
this is at the cost of some bias in the point estimate when
the asymmetry is close to a boundary value. Given this,
in cases of high asymmetry, the choice of estimate may
depend upon the goal of the analysis; if minimizing bias is
important, say, where there are many measurements to
be combined into one estimate, then one may still want to
use the naive estimate, while if the goal is to get an esti-
mate with minimum error then Bayes’ or bootstrap is su-
perior. However, when the asymmetry is near O, the bias
of the Bayes’ or bootstrap methods become as good as
that of the naive, while maintaining their superiority in

bootstrap
-1.0-05 0.0 05 1.0

Bayes' (unif)
-1.0-05 00 05 1.0

Bayes’ (unif)
-1.0-05 00 05 1.0

-1.0 -0.5 0.0 0.5 1.0
bootstrap
FIG. 3. Point estimates of R from simulation study 5

(R =0).
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mean square €rror, so are to be recommended.

As regards an interval estimate, no method provides
particularly accurate coverage, although there is evidence
of gross overcoverage with propagation of errors under a
low signal. This is consistent with the fact that the mean
length of the POE interval estimate is longer than that
provided by other methods. Also, there is a dropoff in
coverage with the Bayesian approach in study 3 and with
the bootstrap approach in studies 4 and 5. However, it is
difficult to make any firm conclusions about coverage
performance, other than to say that no method is ideal.

We finish by reiterating that the proponent of Bayesian
methodology would address concerns about bias and cov-
erage by saying that they are meaningless concepts under
the Bayesian paradigm, since R has no true value and is a
random quantity. Even if we disregard this retort, we be-
lieve that the current naive technique has sufficient prob-
lems, under difficult experimental conditions, to make
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one consider either of the alternative approaches in the
presence of high noise or where the asymmetry is expect-
ed to be close to 1. As to which of these two should be
used, we will confine ourselves to saying that this is a
choice to be made by the experimenter, according to his
or her preference.
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